# New and Old Infectious Threats – Risks and Countermeasures

16.Střešovice Transfusion Day, November 15<sup>th</sup>, 2023

Dr. Marcus Picard-Maureau Sr. Scientific Affairs Director EMEA






# **Conflict of Interest**

Marcus Picard-Maureau is employee and shareholder of Cerus Europe B.V., the manufacturer of the INTERCEPT Blood System



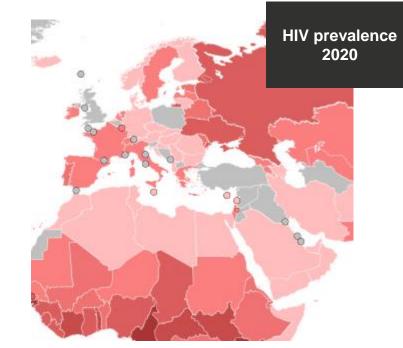
# Agenda

- 1. Old Viral Risk Still There?
- 2. Emerging (Arbo) Viruses
- 3. Preparedness What Comes Next?
- 4. Bacterial Risk
- 5. Pathogen Inactivation for Platelets All the Same?
- 6. New Applications for Safer Components
- 7. Closing



# 1. Old Viral Risk – Still There?




# The 3 major pathogens: HIV, HBV, HCV



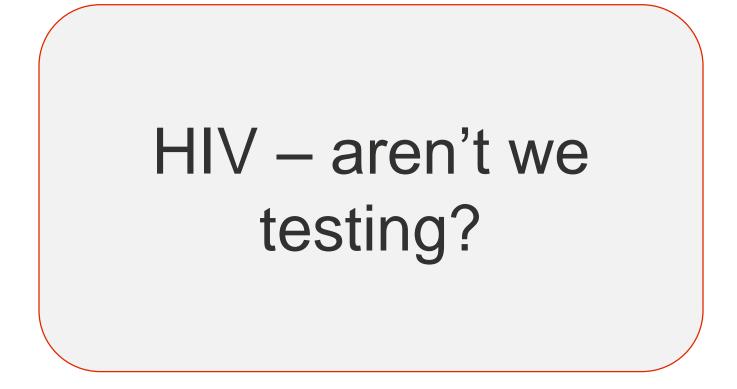
The Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. *Lancet Gastroenterol Hepatol.* 2017;2:161–76.

Serology and NAT standard in almost all blood centers

| Risk & Window Periods:       |       |  |  |  |
|------------------------------|-------|--|--|--|
| HIV: ~1: 2.9x10 <sup>6</sup> | 11 d  |  |  |  |
| HBV: ~1: 3x10 <sup>5</sup>   | ~34 d |  |  |  |
| HCV: ~1: 2.5x10 <sup>6</sup> | 12 d  |  |  |  |



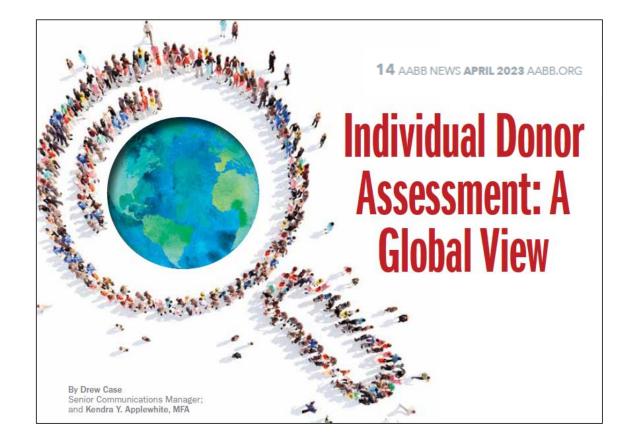
https://commons.wikimedia.org/wiki/File:World\_map\_of\_countries\_ by\_HIV-AIDS\_adult\_prevalence\_rate\_%282020%29.svg

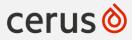

Transfusion transmission by Serology and NAT negative donors regularly reported (low numbers)



Transfusion transmission possible in rare cases:

- Low viral load below LOD
- Window period
- New variants






# **Individual Donor Assessment**

- MSM donors were in many countries deferred indefinitely or for a certain period of months/years after the last sexual contact.
- Such deferrals were justified by an increased risk of MSM donors for transmission of STDs (sexually transmitted diseases), especially HIV, HBV, HCV, Syphilis.
- Assessing sexual risk behavior of donors individually (w/o taking the sexual orientation into consideration) is becoming the standard in many countries.
- Are there any implications for blood safety?





# **Risk Profile of MSM donors**

 Received:
 14 October
 2022
 Revised:
 21 March
 2023
 Accepted:
 26 May
 2023

 DOI:
 10.1111/vox.13482

 10.1111/vox.13482

REVIEW

8

Vox Sanguinis

Men who have sex with men and risk for transfusion-transmissible infections in blood donors in Western countries: A systematic review update

Natalie Schroyens<sup>1,2</sup> | Vere Borra<sup>1,2</sup> | Veerle Compernolle<sup>3,4</sup> | Philippe Vandekerckhove<sup>2,5,6</sup> | Emmy De Buck<sup>1,2</sup> **Conclusion:** There may be an increased risk of HIV in MSM blood donors. Shortening the deferral from permanent to 1 year may have little to no effect on TTI risk. However, there is limited, unclear evidence from observational studies concerning the impact of introducing 3-month or risk-based deferrals.

#### TABLE 4 Twelve Type III (case-control) studies.

|                                    |                                                                                                                                   |                                                  | Outcome                  |                               |                |                        |                              |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|-------------------------------|----------------|------------------------|------------------------------|
| Study                              | Donor population                                                                                                                  | Risk factor                                      | HIV                      | HBV<br>(anti-HBC)             | HBV<br>(HBsAg) | нсу                    | HTLV-I/II                    |
| Allison, 2012, USA [47]            | 469 cases versus 217 false-positive<br>controls                                                                                   | MSM                                              | -                        | -                             | -              | RR: 8.79 [1.18; 65.25] | -                            |
| Bruhn, 2021, USA [34, 38]          | 224 HIV cases, 11 male recent HBV cases,<br>18 male recent HCV cases, 553 false-<br>positive controls (for HBsAg or anti-<br>HIV) | MSM or sex with MSM during<br>the past 12 months | aOR: 16.7 [3.8; 74.4]    | -                             | -              | OR: 1.50 [0.40; 5.60]  | -                            |
| Busch, 1994, USA [35]              | 129 cases versus 131 age-matched<br>controls (all males)                                                                          | MSM                                              | OR: 45.0 [10.66; 189.84] | -                             | -              | -                      | -                            |
| Christensen, 2001,<br>Denmark [39] | 37 HBV cases versus 553 false-positive<br>controls                                                                                | Sex with homo/bisexual male                      | -                        | aOR: 5.44<br>[0.52;<br>50.20] | -              | -                      | -                            |
| Custer, 2014/5,<br>USA [36, 37]    | 149 HIV cases, 190 HBV cases, 45 HTLV-<br>I/II cases versus 761 false-positive<br>controls (all males)                            | MSM or sex with MSM                              | aOR: 62.3 [27.6; 140.4]  | -                             | / (HBV NAT)    | -                      | RR: 2.60<br>[0.61;<br>11.18] |



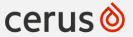
 Received: 10 March 2021
 Revised: 16 June 2021
 Accepted: 16 June 2021

 DOI: 10.1111/vox.13176

#### ORIGINAL ARTICLE

Vox Sanguinis SBT Hermitian Sector

#### HIV residual risk in Canada for apheresis source plasma donation without deferral for men who have sex with men


Eliana Aubé<sup>1,2</sup> | Antoine Lewin<sup>2,3</sup> | Sheila F. O'Brien<sup>4</sup> | Yves Grégoire<sup>5</sup> | Josiane Pillonel<sup>6</sup> | Whitney R. Steele<sup>7</sup> | Brian Custer<sup>8,9</sup> | Katy L. Davison<sup>10</sup> | Marc Germain<sup>5</sup> | Clive R. Seed<sup>11</sup> | Félix Camirand Lemyre<sup>1,12</sup> | the Surveillance, Risk Assessment and Policy Subgroup of the ISBT Transfusion Transmitted Infectious Diseases Working Party Conclusion: Based on simulation results, there would be a negligible HIV residual risk associated with the removal of a time-based MSM deferral without quarantine for source plasma incorporating PI.

| I A B L E 4         Human Immunodeficiency virus (HIV) risk estimate |                  |                                                 |                                       |                                                 |                                       |                                                 |
|----------------------------------------------------------------------|------------------|-------------------------------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------------------------------|
|                                                                      | Deferral model   | Most likely                                     | Optimistic                            | Pessimistic i                                   | Pessimistic ii                        | Worst-case                                      |
| HIV positive donations per 1,000,000 donations                       | 3-month deferral | 2.79                                            | 2.71                                  | 5.10                                            | 5.68                                  | -                                               |
|                                                                      | No deferral      | 3.01                                            | 2.86                                  | 5.96                                            | 6.32                                  | 57.4                                            |
| Number of pools with a viral load (in 300,000 pools)                 | 3-month deferral | 1323                                            | 1259                                  | 2885                                            | 3136                                  | -                                               |
|                                                                      | No deferral      | 1483                                            | 1335                                  | 3719                                            | 3994                                  | 8617                                            |
| Mean viral concentration per pool after NAT and PI (RNA              | 3-month deferral | $\textbf{1.93}\times\textbf{10}^{-\textbf{14}}$ | $1.82\times10^{-14}$                  | $\textbf{1.95}\times\textbf{10}^{-\textbf{13}}$ | $1.97\times10^{-14}$                  | -                                               |
| copies/ml)                                                           | No deferral      | $\textbf{1.95}\times\textbf{10}^{-\textbf{14}}$ | $1.66 \times 10^{-14}$                | $\textbf{1.95}\times\textbf{10}^{-\textbf{14}}$ | $2.01\times10^{-14}$                  | $\textbf{2.81}\times\textbf{10}^{-\textbf{13}}$ |
| Probability of getting a pool with a viral load                      | 3-month deferral | 0.00441                                         | 0.00420                               | 0.00962                                         | 0.01045                               | -                                               |
|                                                                      | No deferral      | 0.00494                                         | 0.00445                               | 0.01240                                         | 0.01331                               | 0.02872                                         |
| Mean copies per pool after NAT and PI (RNA copies/pool)              | 3-month deferral | $9.76 	imes 10^{-8}$                            | $9.17 \times  10^{-8}$                | $\textbf{9.75}\times\textbf{10^{-8}}$           | $9.73	imes10^{-8}$                    | -                                               |
|                                                                      | No deferral      | $\textbf{9.79}\times\textbf{10^{-8}}$           | $\textbf{8.16}\times\textbf{10^{-8}}$ | $9.70\times10^{-8}$                             | $1.00\times10^{-7}$                   | $\textbf{1.63}\times\textbf{10}^{-6}$           |
| Median copies per pool after NAT and PI (RNA copies/pool)            | 3-month deferral | $\textbf{1.75}\times\textbf{10^{-8}}$           | $1.55 \times  10^{-8}$                | $1.65\times10^{-8}$                             | $1.72\times10^{-8}$                   | -                                               |
|                                                                      | No deferral      | $\textbf{1.47}\times\textbf{10^{-8}}$           | $1.49 \times 10^{-8}$                 | $1.59\times10^{-8}$                             | $1.64\times10^{-8}$                   | $1.63\times10^{-8}$                             |
| Maximum copies per pool after NAT and PI (RNA copies/                | 3-month deferral | $\textbf{1.77}\times\textbf{10}^{-6}$           | $1.15 	imes 10^{-6}$                  | $\textbf{2.05}\times\textbf{10}^{-6}$           | $\textbf{1.99}\times\textbf{10}^{-6}$ | -                                               |
| pool)                                                                | No deferral      | $2.20\times10^{-6}$                             | $1.26 \times  10^{-6}$                | $2.00\times10^{-6}$                             | $2.28\times10^{-6}$                   | 0.01041                                         |

 TABLE 4
 Human immunodeficiency virus (HIV) risk estimate

Abbreviations: NAT, nucleic acid testing; PI, pathogen inactivation.

Aube E et al., 2021. HIV residual risk in Canada for apheresis source plasma donation without deferral for men who have sex with men. Vox Sang 117: 201-2017





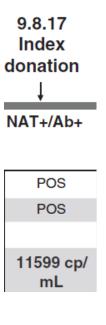
PARTNER and PARTNER2 study with 130.000 condom-less sex acts between an HIV-positive (under ART with a viral load <200 IU/mL) and HIVnegative partner

Rodger AJ et al., 2016. *JAMA* 316: 171-181; Rodger AJ et al., 2019. *Lancet* 393: 2428-2438

# **U=U?**

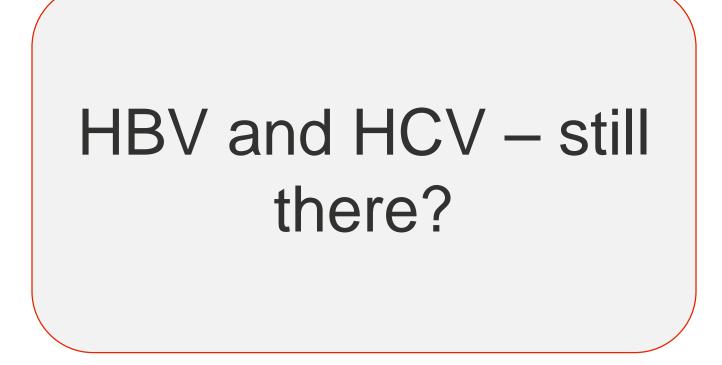
| VoxSanguinis                                      | International Society of Blood Transfusion                                  |
|---------------------------------------------------|-----------------------------------------------------------------------------|
| The International Journal of Transfusion Medicine |                                                                             |
|                                                   | Vox Sanguinis (2019) 114, 628-630                                           |
| COMMENTARY                                        | © 2019 International Society of Blood Transfusion<br>DOI: 10.1111/vox.12790 |
| Undetectable does not equal                       | untransmittable for HIV and                                                 |

Iain B. Gosbell,<sup>1,2</sup> D Veronica C. Hoad,<sup>3</sup> D Claire E. Styles,<sup>3</sup> D June Lee<sup>3</sup> & Clive R. Seed<sup>3</sup> D<sup>1</sup> Clinical Services and Research, Australian Red Cross Blood Service, Sydney, NSW, Australia<sup>2</sup> School of Medicine, Westem Sydney University, Penrith, NSW, Australia<sup>3</sup> Clinical Services and Research, Australian Red Cross Blood Service, Perth, WA, Australia


No transmission by sexual contact with viral serum load below 200 copies/mL

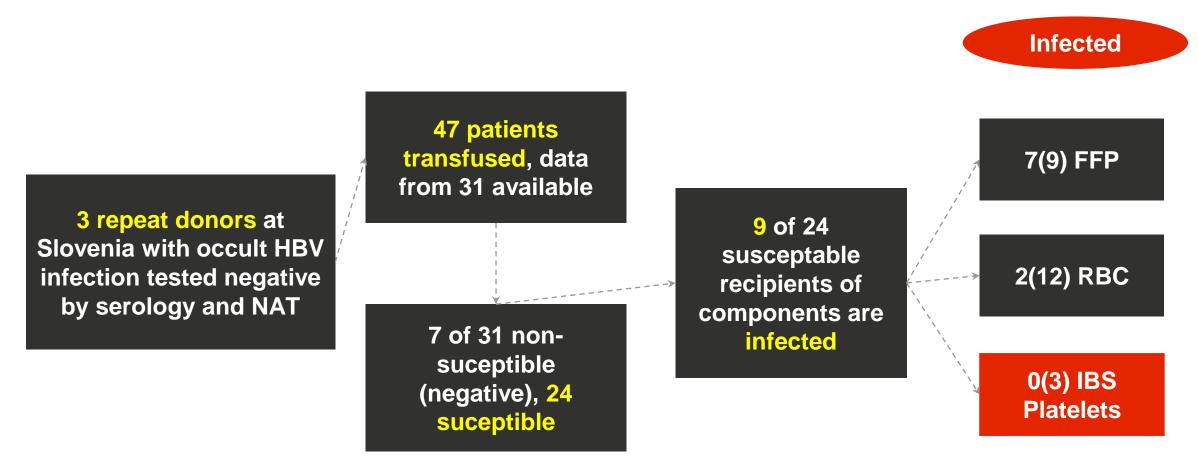
blood transfusion

A minimum infectious dose of 291 copies in plasma PER UNIT was published (approx. 1.5 copies/mL) With 10 copies/mL, 30 mL of plasma would be potentially infectious

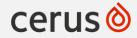



## **HIV Transfusion-Transmission in France 2017**

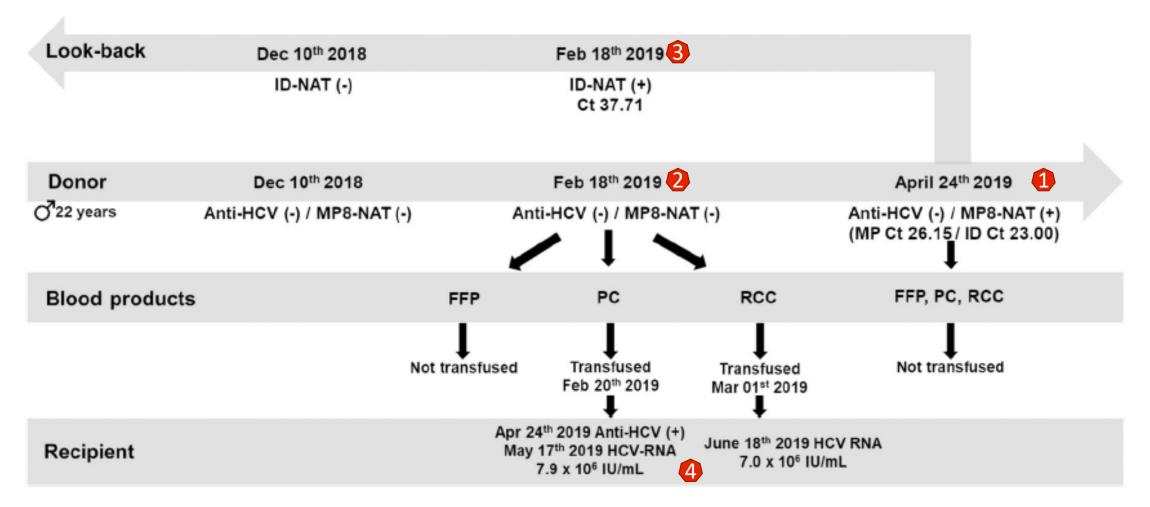



Cappy P et al., 2019. Transfusion of HIV-infected blood products despite highly sensitive nucleic acid testing. Transfusion 59: 2046-2053









# HBV-Transfsuion-Transmission in Slovenia, 2018




Candotti D et al., 2019. Multiple HBV transfusion transmissions from undetected occult infections: revising the minimal infectious dose. Gut 68: 313-321.



# HCV Transfusion-Transmisison in Germany, 2019



Himmelsbach K et al., 2022. Second hepatitis C virus transmission by blood components since introduction of mandatory NAT screening in Germany. *Transfusion* Dec 14: doi: 10.1111/trf.17224. Online ahead of print.



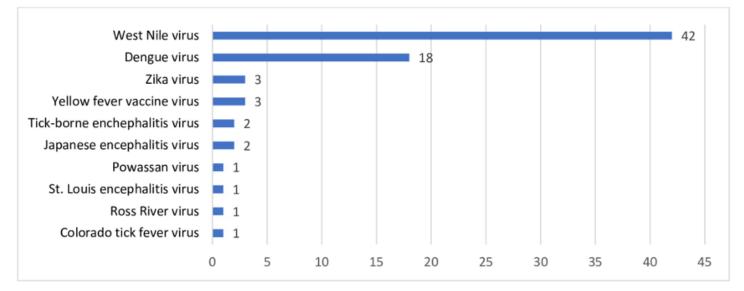
# 2. Emerging (Arbo) Viruses



## **Transfusion-Transmitted Arboviruses**

- The authors conducted a systematic literature search to assess (no start date, end date Nov 10, 2021) assessing reported cases arbovirus transfusion transmission.
- The data is used to assess the **risk for blood safety**.

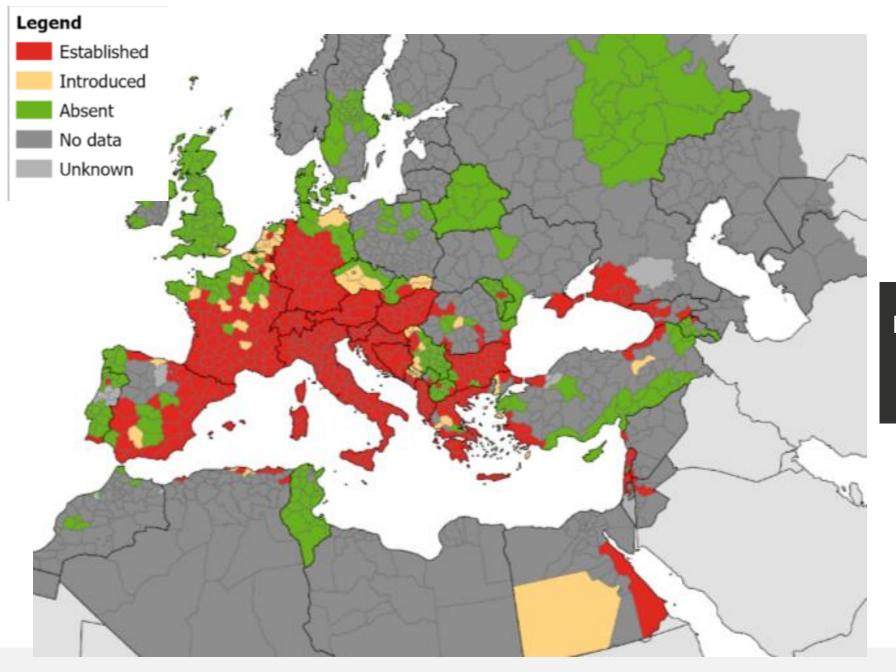
- The majority of reported cases are WNV (57%) and DENV transfusiontransmissions (24%).
- 86% of cases are viruses which are reported to be effectively inactivated by INTERCEPT


#### RESEARCH ARTICLE

Transfusion-transmitted arboviruses: Update and systematic review

#### Ángel Giménez-Richarte<sup>®1</sup>\*, María Isabel Ortiz de Salazar<sup>1</sup>, María-Paz Giménez-Richarte<sup>2</sup>, Miriam Collado<sup>1</sup>, Pedro Luís Fernández<sup>1</sup>, Carlos Clavijo<sup>1</sup>, Laura Navarro<sup>1</sup>, Cristina Arbona<sup>1</sup>, Pascual Marco<sup>3,4</sup>, Jose-Manuel Ramos-Rincon<sup>4</sup>\*

1 Valencian Community Blood Transfusion Center, Valencia, Spain, 2 Medicial student, Miguel Hernandez University of Elche, Alicante, Spain, 3 Service of Hematology, General-University Hospital of Alicante-ISABIAL. Alicante, Spain, 4 Clinical Medicine Department, Miguel Hernandez University of Elche, Alicante, Spain


\* gimenez\_ang@gva.es (AG-R); jose.ramosr@umh.es (J-MR-R)

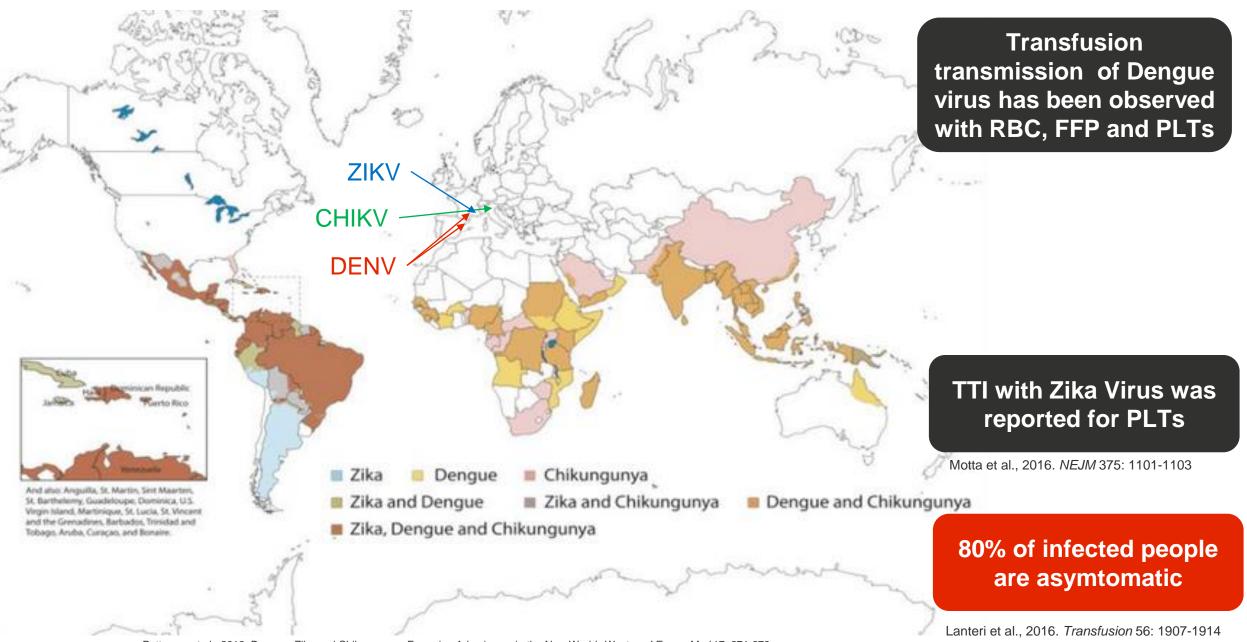


#### Fig 2. Reported transfusion-transmitted arbovirus cases.

https://doi.org/10.1371/journal.pntd.0010843.g002

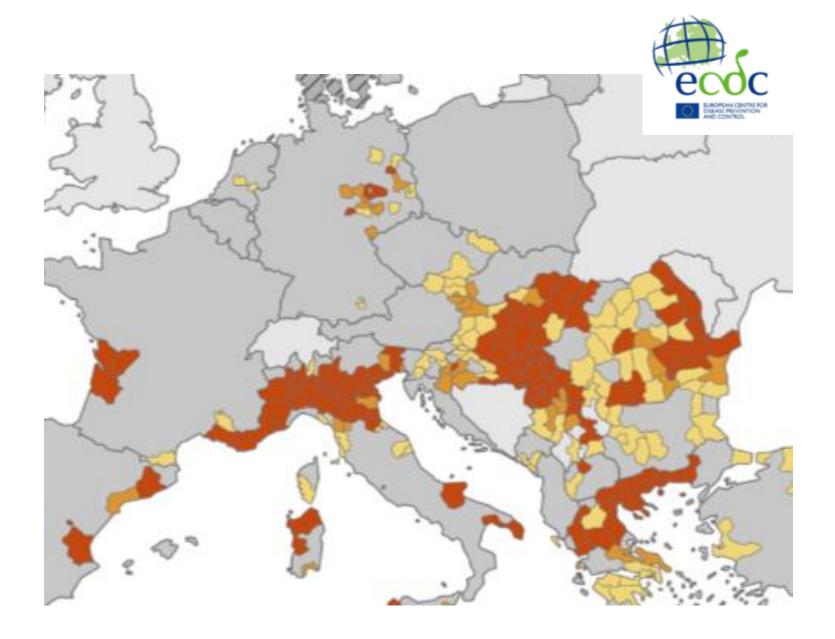




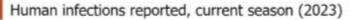

Distribution of invasive Aedes species (02/2023)



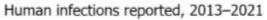
**Potential carrier of Arboviruses:** 


DENV, ZIKV, CHIKV






Patterson et al., 2016. Dengue, Zika and Chikungunya: Emerging Arboviruses in the New World. Western J Emerg Med 17: 671-679






#### Distribution of human West Nile virus infections in NUTS 3 or GAUL 1 regions of the EU/EEA and neighbouring countries during 2013–2022, as of 27 of September 2023



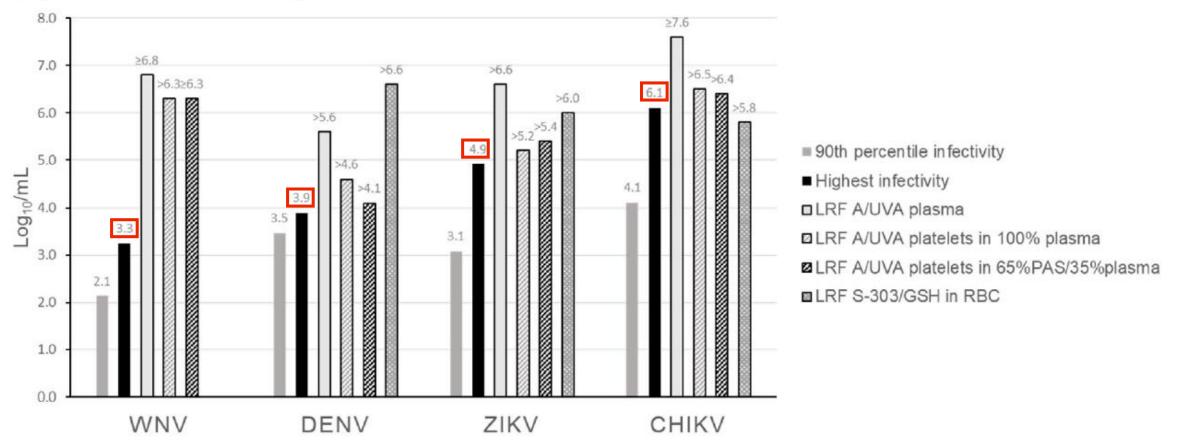
Human infections reported, 2022



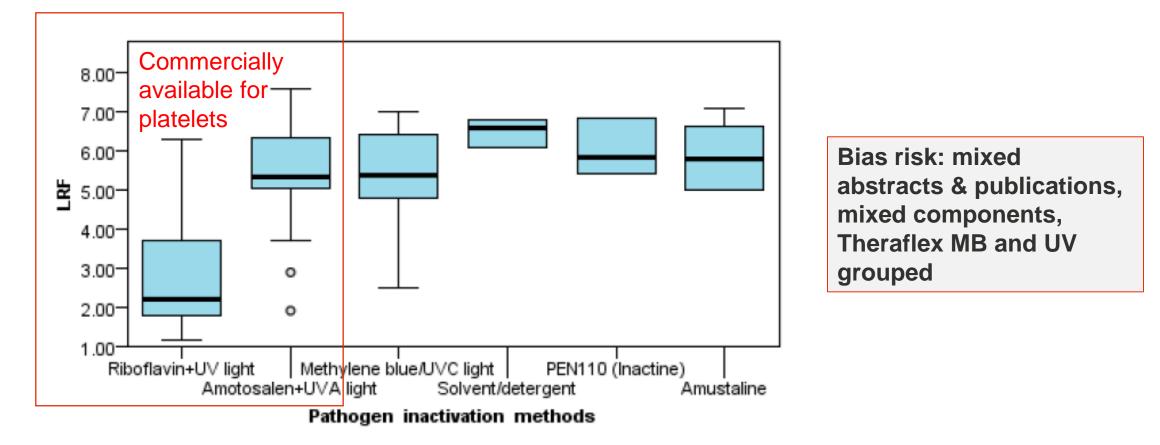


No data reported

No infections reported


Not included

WNV Cases 2023 compared to previous seasons




# Highest projected infectious viral loads vs log reduction factors

# (A) Infectivity titers in blood donors versus PRT LRF



# **Arbovirus comparison - Summary**



**Figure 2.** LRF achieved with each pathogen inactivation method. Box plots shows the distribution of the samples obtained with each PIM. The Kruskal-Wallis one-way ANOVA (independent samples) shows statistically significant differences (p<0.001).



# **Arbovirus Testing & PRT**



#### Bekanntmachung

Veröffentlicht am Donnerstag, 4. Juni 2020 BAnz AT 04.06.2020 B6 Seite 1 von 5

#### Paul-Ehrlich-Institut Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

Information for Blood Establishments Regarding FDA's Determination that Zika Virus is no Longer a Relevant Transfusion-Transmitted Infection, and Withdrawal of Guidance titled "Revised Recommendations for Reducing the Risk of Zika Virus Transmission by Blood and Blood Components"

Bekanntmachung über die Zulassung von Arzneimitteln Anordnung von Maßnahmen, die das Risiko der Übertragung einer in Deutschland erworbenen West-Nil-Virus (WNV)-Infektion durch Blutkomponenten zur Transfusion (zelluläre Blutzubereitungen und therapeutische Frischplasmen) und durch Stammzellzubereitungen zur hämatopoetischen Rekonstitution minimieren können

May 12, 2021

# **ZIKV Safety**



- ZIKV NAT screening AND
- donor deferrals OR
- pathogen inactivation (IBS)

## **WNV Safety**

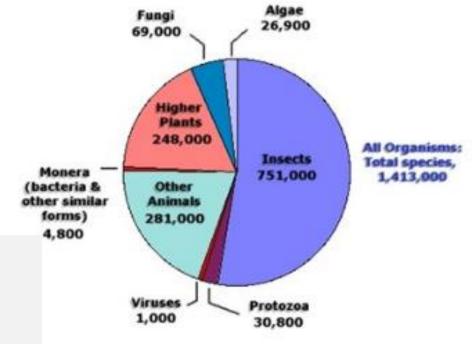
- WNV NAT screening OR
- donor deferrals OR
- appropriate pathogen inactivation

# cerus᠔

# 3. Preparedness – What Comes Next?



# What will be next?


There are likely 1 Million vertebrate viruses, 99.8% are yet not discovered. That is a huge potential for future zoonotic Emergence!

## We do not know:

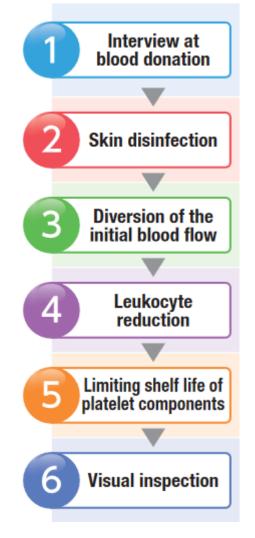
- What will be next
- When will be next
- How and how fast it will be transmitted
- How and how fast disease will progress

1918 Spanish Flu
1957 Asian Flu
1968 Hong Kong Flu
1968 HIV
2002 SARS CoV
2004 Bird Flu (H5N1)
2009 Swine Flu (H1N1)
2012 MERS CoV
2015 Zika Virus
2019 SARS-CoV-2
2022 Monkeypox

#### Number of Living Species of All Organisms Currently Known



Morse, S.S. 1995. Emerg Infect Dis 1: 7-15




# 4. Bacterial Risk



# **Transmission of Bacteria by Transfusion (of platelets)**

Such contamination is in the majority caused by **needle prick contaminations**, secondary by **donor bacteremia**. The less well established safety measures are in place, the higher the contamination rate (human failure).



Transfusion Information 1712-156 – The Japanese Red Cross

# Primary Bacterial Culture: Sensitivity **31%**

Walker BS et al., 2020. Residual bacterial detection rates after primary culture as determined by secondary culture and rapid testing in platelet components: A systematic review and metaanalysis. *Transfusion* 60: 2029-2037



Wendel S et al., 2005. Double, double, toil and trouble. *Transfusion* 45: 1241



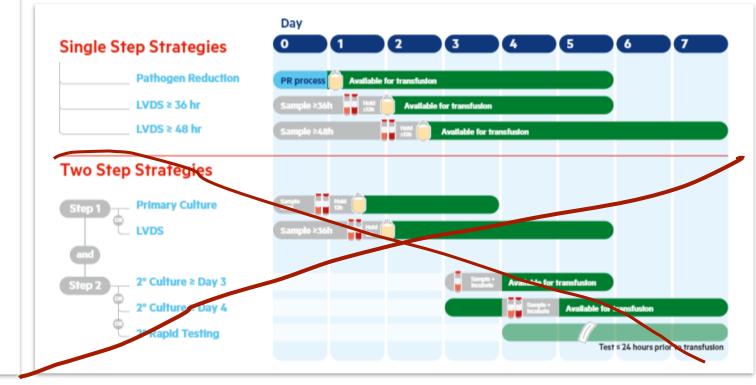
# FDA-guidance to enhance the safety and availability of platelets

Bacterial Risk Control Strategies for Blood Collection Establishments and Transfusion Services to Enhance the Safety and Availability of Platelets for Transfusion

# **Guidance for Industry**

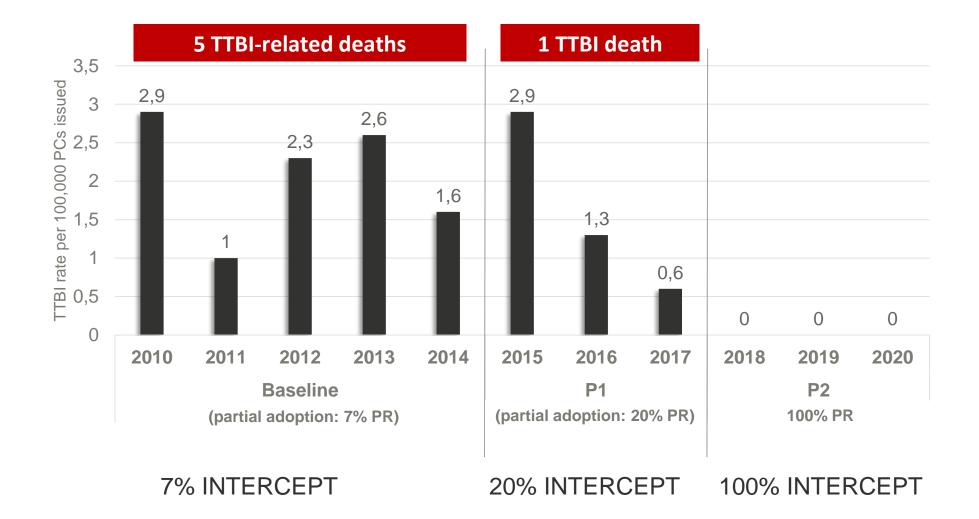
Additional copies of this guidance are available from the Office of Communication, Outreach and Development (OCOD), 10903 New Hampshire Ave., Bldg. 71, Rm. 3128, Silver Spring, MD 20993-0002, or by calling 1-800-835-4709 or 240-402-8010, or email ocod@fda.hhs.gov, or from the Internet at

https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-informationbiologics/biologics-guidances.


For questions on the content of this guidance, contact OCOD at the phone numbers or email address listed above.

U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research September 2019 Updated December 2020

https://www.fda.gov/media/123448/download


### All PC have to undergo since 1-10-2021:

- > Bacterial screening with enhanced protocol (LVDS) **OR**
- > Bacterial screening in combination with 2<sup>e</sup> rapid test **OR**
- Pathogen Inactivation/Reduction





# **TTBI-related Cases and Deaths in France pre- and post PI**





# **TTBI-related Cases and Deaths in Switzerland**

| Year                                                                             | Conventional platelet<br>component transfusion-<br>related sepsis (fatal <sup>)</sup> b | INTERCEPT platelet<br>component transfusion-<br>related sepsis (fatal) <sup>c</sup> |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 2005                                                                             | 6 (2)                                                                                   |                                                                                     |
| 2006                                                                             | 2 (0)                                                                                   |                                                                                     |
| 2007                                                                             | 2 (0)                                                                                   |                                                                                     |
| 2008                                                                             | 2 (0)                                                                                   |                                                                                     |
| 2009                                                                             | 3 (1)                                                                                   |                                                                                     |
| 2010                                                                             | 1(0)                                                                                    |                                                                                     |
| 2011                                                                             | 0 (0)                                                                                   | 0 (0)                                                                               |
| 2012                                                                             |                                                                                         | 0 (0)                                                                               |
| 2013                                                                             |                                                                                         | 0 (0)                                                                               |
| 2014                                                                             |                                                                                         | 0 (0)                                                                               |
| 2015                                                                             |                                                                                         | 0 (0)                                                                               |
| 2016                                                                             |                                                                                         | 0 (0)                                                                               |
| Total                                                                            | 16 (3)                                                                                  | 0 (0)                                                                               |
| <sup>≇</sup> Two-sided I<br><sup>b</sup> Total units<br><sup>c</sup> Total units |                                                                                         |                                                                                     |

pathogen-reduced (INTERCEPT) (80% of all PCs produced in  $2011 \rightarrow 100\%$  since November 2011)

Platelet-additive solution ( $\sim 30\%$  in 2010  $\rightarrow 100\%$  in November 2011)

**7-day storage** (from July 2013)



# Significant Underreporting of TTI

- TR/TTI are not recognized
- The confirmation/validation of TR/TTI is too complex
- TR/ TTI occur after a delay +24h post transfusion
- TR/TTI are not reported due other tasks / high work load

TR: Transfusion Reactions TTI: Transfusion-Transmitted Infections



# **Donor Management**

**Diagnostic Testing** 

**Pathogen Inactivation** 

Questionary

**Deferrals** 

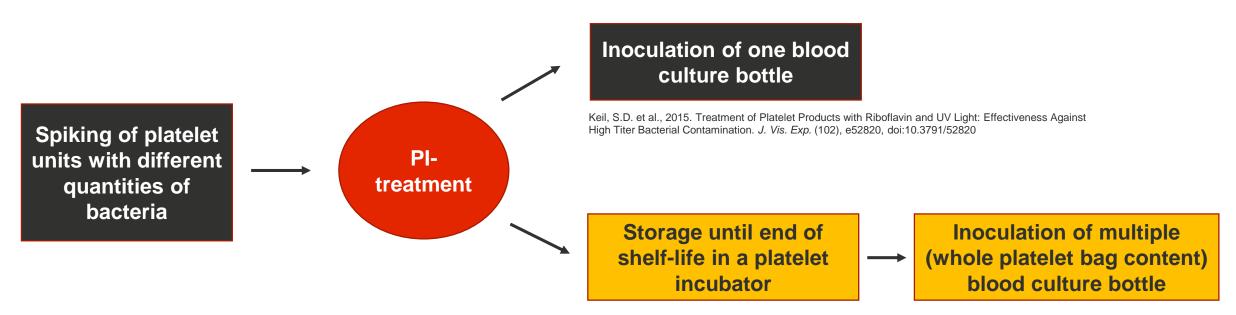
Risk: Donor could not tell the truth or not know **Bacterial culture** 

Serology, PCR

Risk: Only few known pathogens tested, false negative tests possible **Plasma inactivation** 

**Platelet inactivation** 

(Whole Blood inactivation)


No inactivation for RBC yet



5. Pathogen Inactivation for Platelets – all the Same?



# **Assessment Pre- and Post PI-Treatment**



McDonald CP et al., 2021. Assessing the inactivation capabilities of two commercially available platelet component pathogen inactivation systems: effectiveness at end of shelf life. *Vox Sang* 116: 416-424



# Assessment of the Inactivation Capacity: Bacterial Load Pre-inactivation Preventing Bacterial Detection until End of Shelf Life

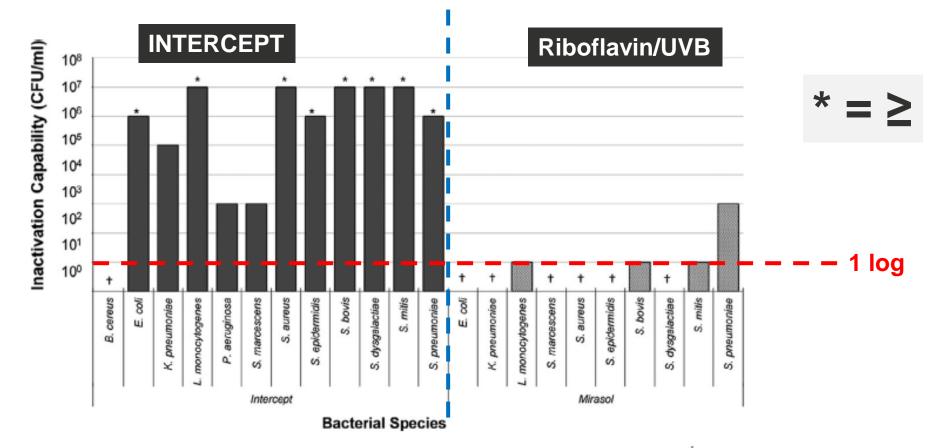


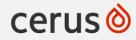

Fig. 2 Comparison of inactivation capability for intercept and mirasol. \*Capability  $\geq$  highest concentration assessed; <sup>†</sup>Capability  $\leq$  lowest concentration assessed (<10<sup>2</sup> CFU/ml for *B. cereus* and *S. epidermidis*; <10<sup>1</sup> CFU/ml for other species).

McDonald CP et al., 2021. Assessing the inactivation capabilities of two commercially available platelet component pathogen inactivation systems: effectiveness at end of shelf life. Vox Sang 116: 416-424








#### Article

# In Vitro Comparative Study of Platelets Treated with Two Pathogen-Inactivation Methods to Extend Shelf Life to 7 Days

Nicolas Malvaux <sup>1,\*</sup>, Fanette Defraigne <sup>1</sup>, Styliani Bartziali <sup>1</sup>, Camille Bellora <sup>2</sup>, Kathleen Mommaerts <sup>2,3</sup>, Fay Betsou <sup>2,4</sup> and Anne Schuhmacher <sup>1</sup>

Received: 20 January 2022 Accepted: 22 February 2022 Published: 11 March 2022

- <sup>1</sup> Red Cross of Luxemburg, Boulevard Joseph II, 40, L-1840 Luxembourg, Luxembourg; fanette.defraigne@croix-rouge.lu (F.D.); styliani.bartziali@croix-rouge.lu (S.B.); anne.schuhmacher@croix-rouge.lu (A.S.)
- <sup>2</sup> Integrated Biobank of Luxembourg, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg; camille.bellora@ibbl.lu (C.B.); kathleen.mommaerts@ibbl.lu (K.M.); fay.betsou@lns.etat.lu (F.B.)
- <sup>3</sup> Luxembourg Center for Systems Biomedicine, 6 Av. du Swing, L-4367 Esch-sur-Alzette, Luxembourg
- <sup>4</sup> Laboratoire National de Sante, 1 rue Louis Rech, L-3555 Dudelange, Luxembourg
- \* Correspondence: nicolas.malvaux@croix-rouge.lu; Tel.: +352-2755-4000



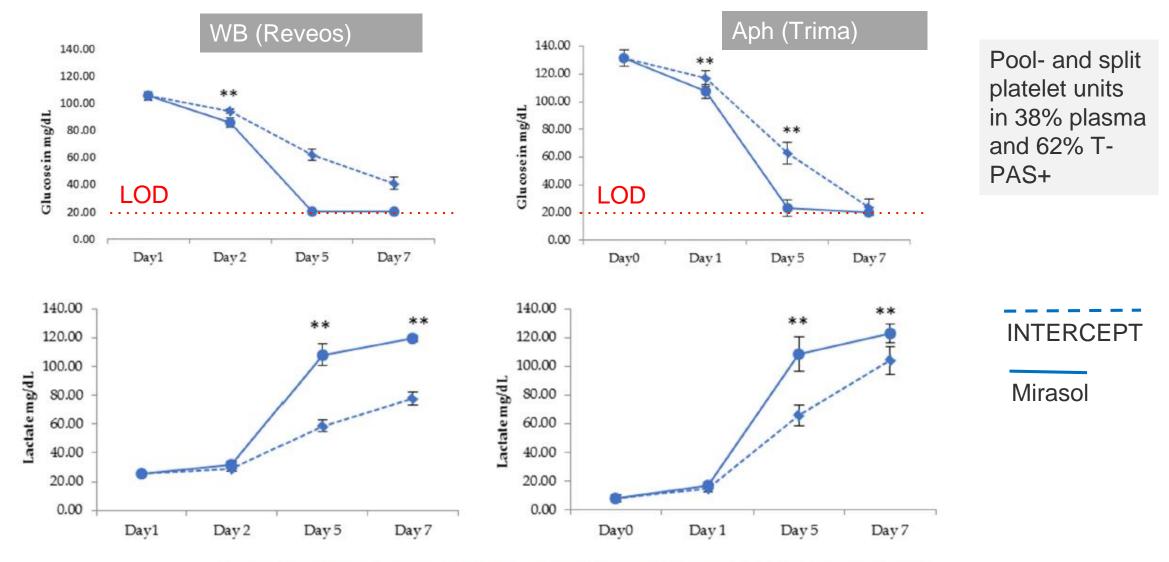
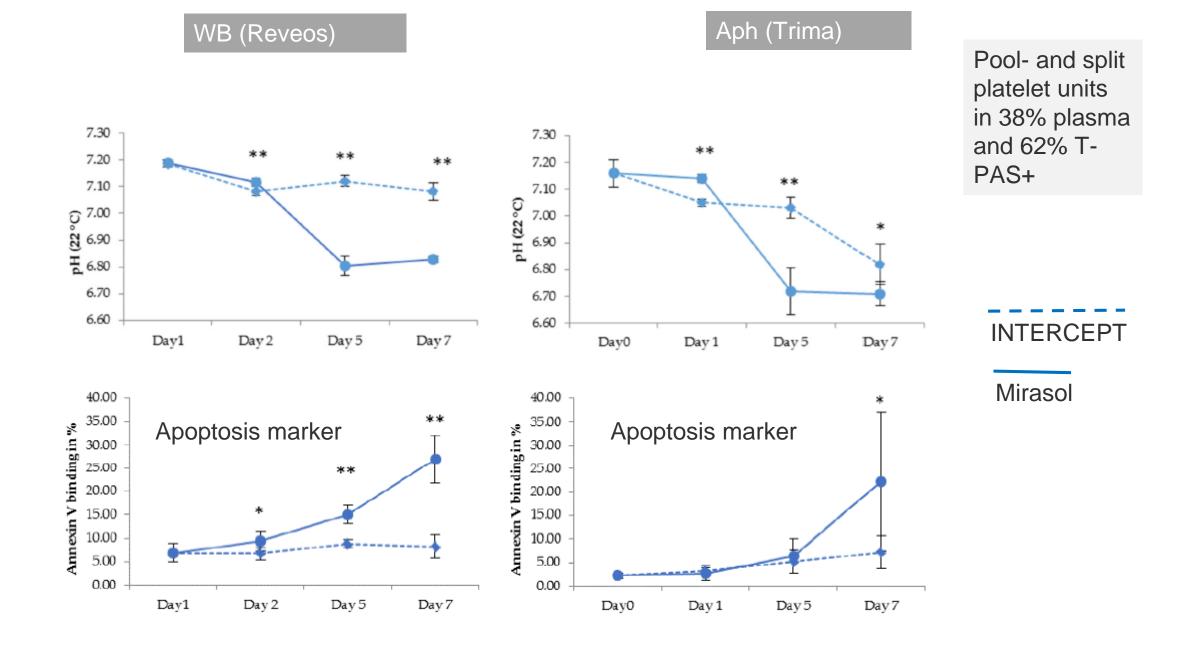




Figure 1. Evolution of glucose and lactate concentration evolution of platelets treated with INTER-CEPT (AM-PI—dotted line) and MIRASOL (RF-PI—solid line) upon 7-day storage for PPCs (Platelet Pool Concentrates) and APCs (Apheresis Platelet Concentrates); \* p < 0.05, \*\* p < 0.01.





6. New Applications for Safer Components



# Pathogen-Reduced Universal Plasma



## Pooled pathogen-reduced universal plasma

#### Comparison of:

#### Maxipools universal (10 units, 4 A, 4 B, 4 AB)

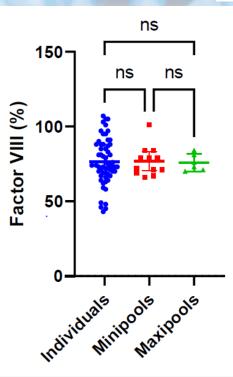
Minipools universal (5 units, 2 A, 2 B, 1 AB) Maxipools single ABO (10 units) Minipools single ABO (5 units)

### PI-treatment post pooling (amotosalen/UVA)

### **Pilot Study** Conference Poster

#### Protocole d'étude pilote de mélanges de plasmas isogroupe ABO ou universels

Fabrice Cognasse<sup>1,2,\*</sup>, Anne-Claire Duchez<sup>1,2</sup>, Marco Heestermans<sup>1,2</sup>, Marie-Ange Eyraud<sup>1,2</sup>, Charles-Antoine Arthaud<sup>1,2</sup>, Amélie Prier<sup>1,2</sup>, Stéphane Paul<sup>3</sup>, Betty Bruot<sup>4</sup>, Sabrina Gress<sup>4</sup>, Béatrice Belcour<sup>4</sup>, Hind Hamzeh-Cognasse<sup>2</sup>

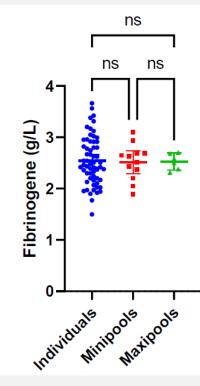

<sup>1</sup> Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Etienne, France;
<sup>2</sup> Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France

<sup>3</sup> Department of Immunology, CIC1408, GIMAP U1111/UMR5308 INSERM-UJM-UCBL-ENS de Lyon-CNRS, University Hospital of Saint-Etienne, Saint-Etienne, France.

<sup>4</sup> Etablissement Français du Sang Grand-Est, Nancy, France;

\* fabrice.cognasse@efs.sante.fr

Reduction of Variability with increasing pool size. Fib/FVIII content of universal plasma not comparable to individual






Du donneur

aux patients

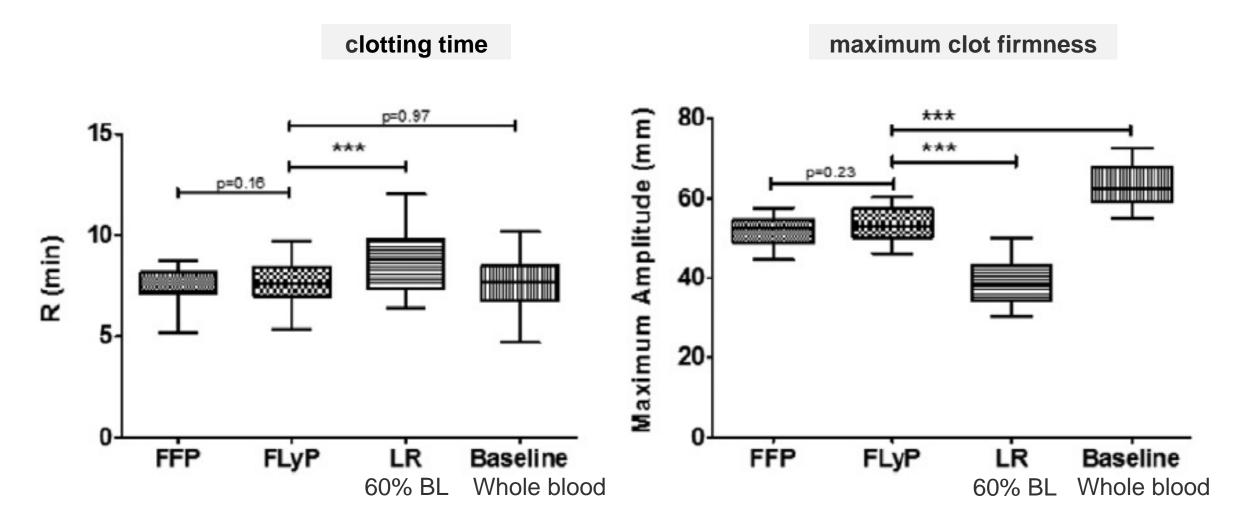
SFVTT 2022 /



## FLyP – a French approach

- Only donors with ≥90 IU/100 mL FVIII accepted (female donors anti HLA tested)
- Apheresis donations, leukoreduced, pathogen reduced (amotosalen/UVA), frozen
- Thawed, pools of approx. 10 units (3 liters) mixed group A, B, AB
- Splitting, freeze-drying by sublimation (4 days)
- Reconstitution in medical water

Martinaud C et al., 2012. In Vitro Hemostatic Properties of French Lyophilized Plasma. Anesthesiology 117: 339-346




2 years shelf-life at room temperature ABO universal >1400 units produced

Pusateri AE et al., 2016. Dried plasma: state of the science and recent developments. *Transfusion* 56: S128-S139



## **FLyP** – a French approach



Sailliol A et al., 2013. The evolving role of lyophilized plasma in remote damage control resuscitation in the French Armed Forces Health Service. Transfusion 53: 65S-71S



## **Tolerability & Clinical Efficacy – INTERCEPT ® Plasma**

The clinical safety profile of INTERCEPT plasma is comparable to conventional plasma/quarantine plasma\*

\*Bost V et al., 2015. Independent evaluation of tolerance of therapeutic plasma inactivated by amotosalen-HCI–UVA (Intercept<sup>TM</sup>) over a 5-year period of extensive delivery. *Vox Sang* 109: 414-416 \*Guignier C et al., 2018. Amotosalen-inactivated plasma is as equally well tolerated as quarantine plasma in patients undergoing large-volume therapeutic plasma exchange. *Transfus Clin Biol* 25: 73-77

The clinical efficacy of INTERCEPT plasma has been shown including the following indications:

- Coagulopathy in liver disease<sup>1</sup>
- Liver transplant support<sup>1,2</sup>
- Therapeutic Plasma Exchange in Thrombotic Thrombocytopenic Purpura<sup>3,4</sup>

<sup>1</sup>Mintz PD et al., 2006. Photochemically treated fresh frozen plasma for transfusion of patients with acquired coagulopathy of liver disease. Blood 107: 3753-3760

<sup>&</sup>lt;sup>2</sup>Cinqalbre J et al., 2015. Comparative effectiveness of plasma prepared with amotosalen-UVA pathogen inactivation and conventional plasma for support of liver transplantation. *Transfusion* 55:1710-1720 <sup>3</sup>Garaud O et al., 2019. Amotosalen-inactivated fresh frozen plasma is comparable to solvent detergent inactivated plasma to treat thrombotic thrombocytopenic purpura. *Transfus Apheres Sci* 58: 102665 <sup>4</sup>Mintz PD et al., 2006. A randomized, controlled Phase III trial of therapeutic plasma exchange with fresh-frozen plasma (FFP) prepared with amotosalen and ultraviolet A light compared to untreated FFP in thrombotic thrombocytopenic purpura. *Transfusion* 46: 1693-1704



# Pathogen-Reduced Frozen Platelets





## Pathogen-reduced, cryopreserved platelets to maintain individual platelet support

Piotrowski D<sup>1</sup>, Przybylska S<sup>1</sup>, Picard-Maureau M<sup>2</sup>

<sup>1</sup>Warsaw Regional Blood Transfusion Center, Warsaw, Poland, <sup>2</sup>Cerus Europe B.V, Amersfoort, The Netherlands

#### Summary:

- CPRPs are produced to mitigates shortages of HLA-typed platelets.
- Decreasing production and demand for CPRPs from 2020-2023, which may be explained by cessation of pandemic measures releasing donor restrictions.
- Polish quality requirements were fulfilled satisfactorily, the recovery rate (69.0 ± 10.5 ) was in line with previous data (70.6% in Sandgren et al., 2023. *Blood Transfus* 21: 127-143).
- No CPRP-transfusion related adverse events were reported.



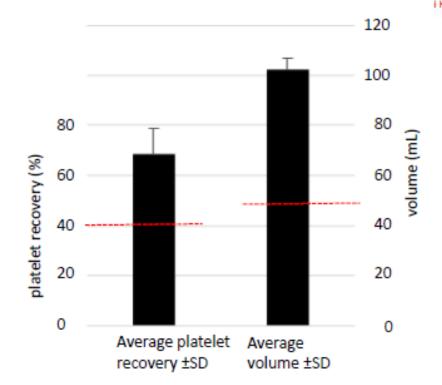



Fig. 2 platelet count and volume of CPRPs post freezing (n=156), the error bars represent the standard deviation. The dotted red lines represent the minimum quality requirements by Polish guidelines.





## Theoretical individual risk to receive a pathogen-contaminated platelet unit

| Infection                           | Per-unit estimate (%) | Per-patient estimate (6 AP units) (%)              |
|-------------------------------------|-----------------------|----------------------------------------------------|
| Bacterial contamination             | 0.067                 | 0.4                                                |
| Clinical sepsis                     | 0.016                 | 0.096                                              |
| TT-CMV                              | 0.1                   | 0.3 (50% susceptible patients)*                    |
| Emerging acute agent                | 0.007-0.075 (0.025)†  | 0.042-0.45 (0.15)†                                 |
| Emerging chronic agent              | 0.01-0.08 (0.045)†    | 0.06-0.48 (0.27)                                   |
|                                     |                       | 0.4-Baseline (bacterial transmission only)         |
| Aggregate infectious risk estimates | Not calculated        | 0.1—Minimum (clinical sepsis only)                 |
|                                     |                       | 1.18-Maximum (bacteria, CMV, and highest EIA risk) |

† The number in parentheses is the most likely value.

‡ The EIA risk used in this calculation is at the uppermost end of the estimated range for a chronic EIA (e.g., 0.48%).

§ The numbers can be tabulated to calculate a variety of other combinations of infectious risks; these might include an acute EIA rather than a chronic EIA, replacing bacterial contamination with clinical sepsis, and excluding CMV risk.



## **Blood Matters.**

